
In the Line of Fire:
Risks of DPI-triggered Data Collection

Ariana Mirian
amirian@ucsd.edu

University of California, San Diego
San Diego, USA

Alisha Ukani
aukani@ucsd.edu

University of California, San Diego
San Diego, USA

Ian Foster
ian@dns.coffee
DNS Coffee

San Francisco, USA

Gautam Akiwate
gakiwate@cs.stanford.edu

Stanford University
Palo Alto, USA

Taner Halicioglu
taner@taner.net
Independent

San Diego, USA

Cynthia T. Moore
ctmoore@ucsd.edu

University of California, San Diego
San Diego, USA

Alex C. Snoeren
snoeren@cs.ucsd.edu

University of California, San Diego
San Diego, USA

Geoffrey M. Voelker
voelker@ucsd.edu

University of California, San Diego
San Diego, USA

Stefan Savage
savage@ucsd.edu

University of California, San Diego
San Diego, USA

ABSTRACT
Cybersecurity companies routinely rely on telemetry from inside
customer networks to collect intelligence about new online threats.
However, the mechanism by which such intelligence is gathered
can itself create new security risks. In this paper, we explore one
such subtle situation that arises from an intelligence gathering
feature present in FireEye’s widely-deployed passive deep-packet
inspection appliances. In particular, FireEye’s systems will report
back to the company Web requests containing particular content
strings of interest. Based on these reports, the company then sched-
ules independent requests for the same content using distributed
Internet proxies. By broadly scanning the Internet using a known
trigger string we are able to reverse engineer how these measure-
ments work. We show that these side-effects provide a means to
empirically establish which networks and network links are pro-
tected by such appliances. Further, we also show how to influence
the associatied proxies to issue requests to any URL.

ACM Reference Format:
Ariana Mirian, Alisha Ukani, Ian Foster, Gautam Akiwate, Taner Halicioglu,
Cynthia T. Moore, Alex C. Snoeren, Geoffrey M. Voelker, and Stefan Savage.
2023. In the Line of Fire: Risks of DPI-triggered Data Collection. In 2023
Cyber Security Experimentation and Test Workshop (CSET 2023), August
7–8, 2023, Marina del Rey, CA, USA. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3607505.3607526

1 INTRODUCTION
Reactive security systems—anti-virus/EDR, firewalls, intrusion pre-
vention systems, email filters, etc.—all face significant challenges.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CSET 2023, August 7–8, 2023, Marina del Rey, CA, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0788-9/23/08.
https://doi.org/10.1145/3607505.3607526

First, they must carefully parse and inspect data streams to iden-
tify those containing known (or likely) malicious objects. Second,
they must also constantly refresh their intelligence to identify new
malicious objects as they appear in the wild. Finally, since each
of these activities takes place in an adversarial environment, such
systems must anticipate that the data they analyze may be designed
to evade or disrupt. Indeed, exploitations of data parsing vulner-
abilities in security products have been around for decades, from
the 2004 ICQ parsing vulnerability in ISS’ RealSecure products [28]
to the contemporary 2021 ASProtect unpacking heap overflow in
Windows Defender [31]. However, the risks associated with intel-
ligence collection in an adversarial environment are less widely
documented or appreciated.

In this paper, we identify and investigate one new such issue:
how an intentional feature of FireEye’s passive network security
products unintentionally exposes those products to manipulation.
Our work arises from an inadvertent discovery that FireEye’s NX
Threat Prevention appliance silently reports back to the company
all passively collected Web requests containing particular trigger
features. These reports are then used to collect the specified con-
tent anonymously by issuing requests from a large, geographically
distributed proxy network. The design and implementation of this
feature may not have fully anticipated the potential impact of adver-
sarial input, however, which is what we address here. In particular,
our paper makes three contributions:

• Identifying and characterizing the network behavior of Fire-
Eye’s hybrid passive/active intelligence collection;
• Developing a methodology for triggering this behavior and
conducting a global measurement to infer the worldwide
footprint of FireEye’s passive monitoring;
• Characterizing the security risks associated with this behav-
ior including the potential for FireEye to be manipulated
into attacking third parties.

Finally, while this work only measures the behavior of a single
manufacturer (FireEye), we believe this kind of exposure is a general
and under-appreciated design issue for the array of products and

https://doi.org/10.1145/3607505.3607526
https://doi.org/10.1145/3607505.3607526


CSET 2023, August 7–8, 2023, Marina del Rey, CA, USA Mirian et al.

services that collect and curate threat intelligence from Web access
telemetry. Our experience further shows that a product’s design
issues can cause havoc for an entire orgnaization. As such, we
discuss options for mitigating these kinds of issues in such systems.

2 BACKGROUND
In July of 2020, one of us requested a file from a private Web server
under our control using a client machine in the same institution.
Shortly after, the Web server started receiving external requests for
the precise file and path that had just been requested. This was both
unexpected and suspicious, because neither the file names or path
were advertised to the public, the server was not configured to allow
directory listing and, in fact, the entire directory was protected by
HTTP basic authentication [12]. This was no fluke. Upon changing
the file path name and issuing the request again, external requests
again appeared seconds later—now for the new path.

Our initial thought was that we were the victim of a data breach
and either the Web server itself or one of the switches on the path
was compromised. Over the course of a day, working with our in-
stitution’s incident response team, we eliminated these possibilities
and eventually—using measurements we describe later—associated
the behavior exclusively with requests being passively monitored
by a FireEye NX Threat Prevention appliance deployed on a key
perimeter link. A series of email and phone exchanges with Fire-
Eye’s representatives ultimately confirmed that we had inadver-
tently stumbled onto a threat intelligence collection feature of their
product line. We share this experience to show how these design
issues can be used maliciously to map and target customers of the
product.

2.1 FAUDE and intelligence collection
This behavior is associated with a feature called FireEye Advanced
URL Detection Engine (FAUDE). FAUDE is a component in a suite
of features designed to identify and block malicious URLs, including
URL rewriting and message clawback in the e-mail context, and
a predictive machine learning model similar to Ma et al. [16] for
classifying potentially malicious URLs for further analysis by offline
site content analysis tools. The architecture and the details of the
classification strategy are roughly described by Joshi et al. [14].
While FireEye’s documentation seems to suggest that this feature is
associated with their EX (email protection) products, our experience
indicates that, at very least, the NX product is being used as a sensor
to support that feature as well.

Key to their approach is a classifier that identifies suspicious
URLs in real time for further evaluation by a cloud-based service (in
the NX context these are unencrypted URLs observed over passively
monitored links). This design has two ramifications: first, that there
is outbound telemetry about such URLs from the product to the
FireEye cloud1 and second, that the FireEye cloud service then visits
those URLs to enable further analysis.2

1This is implicitly clear in at least one FireEye presentation which states that
“Advanced URL Defense requires two-way threat intel subscription.”

2It appears that this feature and its network-visible side effects are not well
understood, as our institution’s incident response team was entirely unaware of it
and our FireEye representative initially insisted that there was no FireEye feature that
could account for the behavior we were observing. Upon further consultation they
identified FAUDE as the source.

With this information, we realized that we had inadvertently
named one of our files in a way that it matched certain lexical
features in FireEye’s classifier.3 When we fetched our file over the
local network, our HTTP GET request traversed a link that was
monitored by one of our institution’s FireEye NX appliances, and
telemetry about the file was sent to FireEye’s cloud-hosted FAUDE
service. In turn, this service scheduled a set of HTTP GET requests
to fetch a copy of the same content (all of which failed—and then
retried—due to our server’s HTTP authentication requirement).
The source of these fetches was distributed because FireEye, like
most companies collecting threat intelligence, must be careful that
their data-collection infrastructure is not “fingerprinted” and ex-
plicitly blocked by adversaries. Thus, FireEye employs a collection
of proxies used to obfuscate their origin.

While our experience was accidental, it would be a mistake to
consider the list of such trigger features to be a well-protected secret.
A motivated adversary might gain access to a FireEye appliance (or
firmware binary) to reverse engineer the classifier, or simply repli-
cate its approximate training approach to identify likely features
to test. Indeed, by immediately fetching content that triggers its
classifier, FireEye provides an oracle, making such a feature search
far easier.4

Finally, in the course of our initial investigation, we noted one
other facet of this behavior that is critical to this study: that Fire-
Eye implicitly trusts the content of the HTTP Host header. As
per RFC 2616, each HTTP 1.1 request header includes a Host field
which “MUST represent the naming authority of the origin server
or gateway given by the original URL” [11]. The purpose of this
field is to support virtual hosting (i.e., in which a single IP is used
to support multiple Web servers, using the Host field to disam-
biguate the site-specific content). In the course of our experiments,
it became clear that FireEye’s collection infrastructure treats the
content of the captured Host header as the canonical server name
for the URL to be fetched. Thus, if the Host header is spoofed,
FireEye will still follow it. Concretely, if a FireEye appliance trig-
gers on http://foo.com/trigger.txt, but the Host header speci-
fies bar.com, then FireEye’s collection proxies issue a request for
http://bar.com/trigger.txt.

3 METHODOLOGY
While we theorized that this behavior was strictly a byproduct
of FireEye’s passive network monitoring, one of the confounding
factors was the existence of end-system monitoring of unknown
provenance (many of our servers employ EDR products—from both
FireEye and other vendors). To this end, we devised a technique that
leverages hop-limited probes to send triggering content along the
path to the server without ever reaching the server itself. Responses
elicited by such a probe can be unambiguously attributed to an
entity observing the packets in transit. Moreover, by manipulating
the initial IP time-to-live (TTL) on probe packets, we were able to
iteratively test successive hops on the forward path to further isolate

3The trigger term is related to a popular financial institution, suggesting that the
classifier was monitoring for phishing pages.

4For this work, we did not have a physical FireEye appliance available to us for
reverse engineering, and instead choose to treat the FireEye product as a black box
and focused on using our single known trigger term to explore its behavior when
triggered.



In the Line of Fire:
Risks of DPI-triggered Data Collection CSET 2023, August 7–8, 2023, Marina del Rey, CA, USA

GET /248/index.html?trigger
Host: sink.univ.edu

dst ip=44.55.66.77
TTL=4
GET 
/248/index.html?trigger
Host: sink.univ.edu

TTL=4

probe.univ.edu 44.55.66.77

sink.univ.edu

GET 
/248/index.html?trigger
Host: sink.univ.edu

GET
GET

GET

1

3

2

TTL=3 TTL=2 TTL=1

Figure 1:We use a probe server to transmit carefully crafted,
TTL-limitedHTTPGET requests through suspected FireEye
devices to elicit proxy responses to a separate sink server.

the particular link being monitored. Indeed, this was precisely
the approach we used to identify the link being monitored at our
institution (an inference later confirmed by IT staff).

3.1 Conducting a probe
Figure 1 depicts the apparatus we constructed to test for the pres-
ence of FireEye devices: a “probe” server that issues HTTP GET
requests on port 80 towards a target host and a “sink” HTTP server
that logs all requests received on any port. We deployed the probe
server on a special network whose packets were routed around our
institution’s FireEye appliances, located in the United States. The
sink server was located on a different network and both servers
used globally routable addresses and had working reverse DNS
name resolution. Moreover, we only ran probes on IPv4 addresses,
as we did not see evidence that IPv6 addresses were responsive to
the same method.

To probe a target host, the probe server establishes a TCP con-
nection5 to the target IP address on port 80. The probe server then
transmits an HTTP 1.1 GET request of the following form:

GET /nonce/index.html?triддer HTTP/1.1
Host: sink.univ.edu

As shown, the Host header in the request specifies the DNS name of
our sink server. The request URL incorporates the trigger keyword
as a query parameter while the path contains a nonce ensuring
that any request to the sink server can be uniquely attributed to a
particular probe6.

The GET request is sent along the open TCP connection to the
target (as shown in Step 1 in Figure 1), but with an initial IP time-
to-live (TTL) value that ensures the packet will be dropped by the
network at least one hop before the target server (measurement of
the forward path length is performed separately via traceroute,
as described below). Once the request is sent, the probe server
closes the TCP connection to the target server by transmitting a

5Our experiments suggest that FireEye devices are stateful and will not trigger
on content sent absent an active connection.

6Note that we utilize a single trigger keyword in our study. Our objective was not
to iterate over potential keywords, but rather to note the subsequent behavior from a
triggering keyword.

RST segment (with the standard TTL value). If an attempt to send
a probe failed, we did not attempt to re-send a probe in the same
scan.

After sending a probe to target T with nonce N , we examine
the logs at the sink server. If a request for content with nonce N
appears (i.e., from a proxy as shown in Step 3 ) then we conclude
that the path between our probe server and target T is monitored
by some FireEye device that triggered the response (depicted as
Step 2 in Figure 1).7 By decrementing the initial TTL in subsequent
request probes one can explore if this monitoring is in: the stub
network hosting the target, a transit network between our probe
server and T , or elsewhere in the path.

3.2 Global measurement
Building on our basic probing mechanism, we conducted a global
scan for the presence of FireEye monitoring. Starting with roughly
60M IP addresses identified by Censys (on July 22, 2020) as offering
service on port 80 [7], we then subsampled to mitigate our impact
on the network (and FireEye). Reasoning that network monitoring
appliances are typically deployed to protect networks rather than
individual hosts, we randomly selected a single representative IP
from each /24 (typically the smallest externally routable prefix)
to avoid sacrificing significant scanning fidelity. This aggregation
results in a target set of ∼3M IP addresses.

For each of these target IPs, we performed a series of scans. In
each scan, the probe server first performs a traceroute to each IP
address on the list. This traceroute is used to calculate the forward
path hop count, n. We perform five probes towards the target using
an initial TTL of n − 1 (expiring at the hop just before the target, as
described previously). Using this procedure we scanned the entire
set of ∼3M target IPs sequentially on July 24, 2020. We repeated
the entire process (including traceroute) two additional times, on
July 29 and July 31 (we delayed the second and third scan to reduce
any additional load we may have caused). Multiple scans allow us
to account for instability in the network path between the probe
server and each target IP address and helps to mitigate the impact
of packet loss on our measurements.

From these initial scans we identified a subset of roughly 50K IPs
that were responsive (i.e., that a probe directed towards the Web
server at that IP address produced a subsequent proxy request to our
sink server for the associated URL).8 We then performed another
series of scans to explore, at finer granularity, where the FireEye
monitors were located on the paths. Concretely, we performed
a series of scans with ever-decreasing initial TTLs in the probe
packets (i.e., n − 2, n − 3, etc.). The purpose of these scans was
to determine the hop count at which probes directed towards a
previously responsive /24 stop triggering FireEye response activity
and, thus, infer which link on the path is being monitored.

7The absence of such a response is not conclusive (i.e., packets may be lost and
we do not fully understand the queuing behavior of FireEye’s proxy network), but one
can repeat probes to increase confidence.

8Note that these results are a lower bound on the number of FireEye-monitored
/24 networks. It is entirely likely that there are FireEye customers whose networks are
protected by firewalls and our probes will not even reach a monitored link. Moreover,
we do not know if this behavior is limited to certain configuration options or software
versions. Finally, there are a range of situations where a single FireEye device will
monitor a large address range (e.g., a /16), so one should not assume that eachmonitored
/24 represents a distinct device.



CSET 2023, August 7–8, 2023, Marina del Rey, CA, USA Mirian et al.

Probed IP Addresses Responsive IP Addresses
ASN Name % of IPs (#) ASN Name % of IPs (#)

COMCAST-7922 4.07% (135810) SKB-ASSKBroadbandCoLtd 48.99% (24903)
AMAZON-02 2.97% (99152) KIXS-AS-KRKoreaTelecom 35.90% (18247)
KIXS-AS-KRKoreaTelecom 2.82% (94140) HWCSNETHuaweiCloudServicedatacenter 1.77% (901)
DTAGInternetserviceprovideroperations 2.38% (79549) UCSD 0.52% (265)
ATT-INTERNET4 2.25% (75267) UCLA 0.52% (223)
AMAZON-AES 1.57% (52453) VA-TECH-AS 0.44% (207)
FranceTelecom-Orange 1.40% (46776) CHINANET-IDC-BJ-AP 0.37% (187)
OCNNTTCommunicationsCorporation 1.31% (43740) BIZLAND-SD 0.33% (169)
ASN-IBSNAZ 1.21% (40474) ICNDP-AS-KRNamincheonBrodcastingCo. 0.31% (160)
UninetS.A.deC.V. 1.20% (39999) WSU-AS 0.31% (158)

Table 1: Top-ten AS names of the probed (left) and responsive (right) IP addresses in our global scan.

ASN Category % of ASes (#)

Computer and Information Technology 43.63% (315)
Education and Research 18.98% (137)
Government and Public Administration 5.96% (43)
Finance and Insurance 5.96% (43)
Service 5.96% (43)
Community Groups and Nonprofits 3.74% (27)
Retail Stores, Wholesale, and E-commerce 3.60% (26)
Manufacturing 2.77% (20)
Media, Publishing, and Broadcasting 2.22% (16)
Construction and Real Estate 1.39% (10)

Table 2: Top-ten AS categories according to ASdb by unique
ASN.

4 FIREEYE MONITORING FOOTPRINT
Of the original 3,340,474 IP addresses scanned, 50,830 were respon-
sive (i.e., led to a proxy request for the probed content). Using
the NetAcuity service [19], Figure 2 maps these responsive IPs to
their approximate geographical location, showing strong concen-
trations in North America, Europe and coastal Asia. Using CAIDA’s
Prefix-to-AS dataset [6], we map these responsive IPs to 771 unique
responsive ASNs. Table 1 shows both the top-10 ASes originating
IP address in our probe data set and the top-10 most responsive
ASes (i.e., which originate responsive IPs). As shown, these two
distributions are highly dissimilar. The AS distribution of probed
IPs is comparatively flat with the top-10 ASes originating less than
20% of all IPs probed, whereas the top-10 responsive ASes origi-
nate almost 90% of all responsive IPs. In particular, we note that
two large Korean telecommunications companies account for over
80% of all responsive IPs.9 Most ASes containing responsive IPs,
however, are stub ASes representing individual organizations (e.g.,
UCLA, BIZLAND-SD, etc.)

We further classify the ASes containing responsive IPs using the
Stanford ASdb dataset [34] to assign an organizational category
to each AS. Table 2 presents the most common categorizations
of the responsive ASes (covering almost 95% of all ASes). Unsur-
prisingly, Computer Information and Technology is the largest
category, reflecting hosting, cloud, and ISP organizations, followed

9In these two instances, our probes are responsive over a large fraction of /24s in
each AS and, frequently, at greater “hop” distance from the destination IP, suggesting
an intentionally more comprehensive deployment.

Figure 2: Location of probed IPs that elicited a response.

by Education and Research, Government, Finance and Service (to-
gether representing almost over 80% of all responsive ASes). As
an alternate characterization method, we evaluated historical PTR
records from OpenIntel [24] to map responsive IP addresses to DNS
names. Of our 50K responsive IPs, we identified 29,232 historical
PTR records for 8,582 unique IPs (a given IP can have multiple
PTR records). These PTR records map to 860 registered domains,
of which at least 52 domains are associated with large educational
institutions, 41 are major United States Government agencies, and
more than 24 are commercial enterprises—all consistent with the
AS-level analysis.10 This characterization represents a lower bound
since PTR mappings are not uniformly available and may be partic-
ularly ineffective in cloud deployments.

5 FIREEYE PROXY NETWORK
In addition to mapping the organizations deploying FireEye IDSes,
we also briefly analyze the proxy network that issues queries in
response to our probes. Our aim is to understand how often re-
sponses arrive, their frequency, and whether these requests can
be used in a malicious manner (e.g. denial-of-service, or DDoS). In
our analysis we consider each individual GET request arriving at
our sink server containing the trigger keyword and a nonce. It is
frequently the case that multiple requests include the same nonce,
often from disparate source IPs. We observed 568 unique source
IPs (hereafter “proxy”) which collectively issued 235,393 requests
to our sink server during the period of our study.

10We omit the particular organizations identified due to potential privacy concerns
and security risks.



In the Line of Fire:
Risks of DPI-triggered Data Collection CSET 2023, August 7–8, 2023, Marina del Rey, CA, USA

10−2 10−1 100 101 102 103

Delay (minutes)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Figure 3: Delay from probe issuance to first response.

These requests are generally issued promptly—perhaps to ensure
that transient content is captured before it disappears. Figure 3
captures this “reaction time” by plotting the CDF of delay between
our probe issuance and receipt of the first request containing the
corresponding nonce at our sink server. The median time between
a probe and its first proxy response is 14 minutes (i.e., making this
behavior a practical oracle), but occasionally it takes almost an
entire day to receive a response.

Moreover, multiple requests arriving in response to each probe is
the norm, with a median of four requests.11 It is generally the case
that these requests are from distinct proxies (only 32% of probes
generate multiple requests from the same proxy IP). Moreover,
subsequent requests are generally spread out over time as shown
in Figure 4, perhaps to limit network load or validate that the
(potentially) offending content is still present.

Finally, we note that seven proxies in particular are orders-of-
magnitude more likely to be the first proxies to respond to a probe
than the others. They are also the most frequently seen regardless
of arrival order and together respond to 96.4% of all probes. Six
of these are located in ASN 16509, an Amazon AWS network, and
the last is in ASN 4766 (Korea Telecom). We surmise that FireEye
employs a small group of machines dedicated to issuing the first
probes to suspicious URLs, but then outsources subsequent requests
to a proxy network with a globally diverse IP footprint (perhaps
to avoid blocking due to fingerprinting). The static nature of these
frequently appearing proxies thus provides another oracle, as any
content fetched by one of these IP addresses can be inferred to
contain terms of interest to FireEye devices.

While the volume and rate of proxy responses do not indicate
DDoS potential, we note that our measurements were incredibly
conservative in order to reduce load on both FireEye and the net-
works we were probing. It is entirely possible that a targeted at-
tacker could flood a network with proxy responses, but we do not
test the full capability of this hypothesis.

11For reasons unknown, there is a long tail with as many as 29 requests being
generated to a single probe.

0 5 10 15 20 25 30 35 40
Delay (hours)

0

5000

10000

15000

20000

25000

30000

35000

Nu
m

be
r o

f P
ro

be
s

2 proxies per probe
3 proxies per probe
4 proxies per probe
5+ proxies per probe

Figure 4: Time between the first and last proxy response bro-
ken down by number of responses received.

6 RELATEDWORK
The complex parsing tasks inherent in security products, combined
with their privileged access has made them an attractive target
for attackers. Indeed, parsing vulnerabilities in antivirus scanners
and network intrusion detection appliances alike have been widely
documented [1, 15, 20, 22, 23, 27–29, 31–33]. It is also well under-
stood that attackers may leverage limitations in their detection
model [9] or ambiguities in their vantage point [13, 26] to evade
detection. Finally, literature documents the reality that modern se-
curity products make extensive use of real-time telemetry to deliver
intelligence from customers [3, 30]. Since telemetry can include
both behavior and content, there can be significant privacy risks if
it is exposed to third parties [8, 17]. However, the adversarial risks
associated with how such telemetry is gathered and acted upon are
not well understood.

Closest to our work, Bethencourt et al. focused on techniques for
exploiting public network security oracles to identify, via scanning,
the existence of commercial honeypot and blackhole monitors [2].
However, the similarity is limited to the notion of empirically detect-
ing otherwise covert network monitoring via side effects and does
not involve passive monitoring devices or telemetry. Durumeric et
al.’s more contemporary detection of TLS middleboxes [10] also
involves the use of an implicit oracle (TLS protocol impossibility
results), but is otherwise distinct. We also note additional works
that utilize a limited TTL methodology similar to ours, mostly in
censorship-related measurements [4, 5, 25].

7 ETHICS
Our measurement study involved worldwide scanning of open Web
servers to identify the presence of on-path FireEye passive moni-
toring devices. The subject of this measurement was the set of IP
addresses that had previously responded to past Censys network
scans at port 80. The measurement community has long held that
simply connecting to Web sites in this manner imposes no signifi-
cant harm. Moreover, because of our n − 1 TTL methodology, the
trigger string that we have used to test is not delivered to the Web



CSET 2023, August 7–8, 2023, Marina del Rey, CA, USA Mirian et al.

server and thus does not even generate an error log. We explicitly
close each connection with a RST packet and thus we impose little
connection state burden on the target IPs. As well, our scans were
widely distributed and low rate—imparting only a handful of pack-
ets to each target /24 network during each scan. Finally, our sink
host Web server provided content indicating that this was part of
a measurement study and provided a contact e-mail address if it
caused any concerns or problems.12

Due to the security implications of this work, we also have an
ethical disclosure responsibility. We disclosed this issue to FireEye—
both verbally over the phone and in writing—in mid-July of 2020
as part of our incidental discovery of the behavior. This included
the potential for this behavior to be misunderstood by customers
(indeed, our first explanation for the external requests for private
files was a data breach and the problem was only isolated to FireEye
after a lengthy incident response effort at our institution), the risks
associated with blindly following the Host header and the potential
for security implications (such as DDoS) on third parties as a result.
Finally, we have made a point not to publicly document the IP
addresses used by FireEye’s proxy network or a comprehensive list
of the institutions protected by FireEye to minimize the possibility
that this information could be used for abusive purposes.

8 DISCUSSION
Responsive data collection of the kind FireEye employs incurs a
range of security risks, summarized briefly here:

Enables reconnaissance. As we have demonstrated, FireEye’s
reactive behavior provides an implicit oracle, revealing the presence
of its monitoring. Such information (i.e., which sites and links are
protected by FireEye andwhich are not) can be valuable information
for an attacker. Indeed, by mechanically controlling the TTL it is
possible to focus the resolution down to a single link, which we
were able to demonstrate manually on individual networks.

Allows laundering of attacks. Because FAUDE treats the cap-
tured Host header as canonical, it is possible to drive the FireEye
proxy hosts to issue arbitrary GET requests to any host (recall that
the trigger string can be embedded as a parameter or other off-path
URL component). While, in principle, GET requests are meant to
be idempotent, the reality is that a range of services encode side
effects in GETs. Moreover, a number of Web vulnerabilities can be
encoded entirely in a GET request (e.g., the Apache Struts exploit
implicated in the Equifax data breach [21]).13 Thus, an attacker
could use this vulnerability to coerce FireEye to attack third parties
while disassociating themselves from the attack.

Potentially enables DDoS. In spite of our highly conservative
scanning, we were able to drive over 100 proxy requests per second
to our sink server via our probes.14 We see no clear evidence of a
rate-limit for the FAUDE cloud service that addresses the overall
per-destination IP request rate. This suggests that an attacker, with
some fine tuning and further testing, might drive FireEye to commit
a distributed denial-of-service (DDoS) attack via its proxy network

12The contact email did not receive any email for the duration of this study.
13This risk was demonstrated in 2018 by Netsparker researchers who showed how

Googlebot could be so coerced to apply this vulnerability on a third-party site [18].
14Note that the relationship between probe rate to responsive /24 and the subse-

quent request rate appears complex and is decidedly not a simple linear function.

with a modest number of targeted scans—amplified further by re-
questing large objects that actually reside at the target. Moreover,
because the system treats the Host header as canonical, such an
attack can be accomplished without the attacker ever sending traffic
directly to the target.

Can create confusion at protected sites. FireEye does not
publicize the existence or operation of this feature, nor does it pro-
vide a mechanism for users to determine if a request for content is
from its proxy network or not. Thus, if a trigger term is inadver-
tently incorporated in a filename or URL, it may generate external
requests to URLs that are private and have never been knowingly
shared. From our own experience, such an event can incur a signif-
icant investment of incident response time and resources.

As we have mentioned, FireEye is far from unique in actively
collecting and mining Web access telemetry. Indeed, we recognize
that online data collection is increasingly required for most security
products—using customers as sensors has become the only effec-
tive way to “keep up” with attackers. However, it is important to
design such mechanisms to be robust to manipulation and, ideally,
sufficiently robust that one can be transparent about their existence
and how they operate. Our experience suggests several design prin-
ciples that, if followed, would reduce risks, such as those we’ve
identified, in practice:

Minimize the oracle. The reconnaissance risk is enabled be-
cause every FireEye monitor uses the same set of trigger terms,
the trigger terms are non-specific and can be embedded anywhere
in the URL (suggesting an n-gram model), requests for matching
content are issued promptly, and requests are triggered without val-
idating that content was delivered. Changing one or more of these
would have significantly hampered the effectiveness of our mea-
surement survey. A more substantive solution would be to gather
suspicious content inline (i.e., as it is being passively monitored by
the FireEye device) to eliminate the oracle altogether (although at
the price of introducing new privacy risks).

Conservative scheduling of collection requests. In our ex-
periments we received hundreds of thousands of requests from the
proxy network, all to the same server. While each was artificially
unique, the filenames were identical and none returned content
of interest. At a minimum, per destination IP rate-limits would
minimize the viability of DDoS attacks. Further, alerting on par-
ticular triggers and destination IPs would also provide situational
awareness that a data collection capability was being manipulated.

Do not trust the Host header. The HTTP Host header is not
reliable and should either be ignored or only used in combination
with the destination IP address to which a monitored request was
issued. Either implementation would foreclose the possibility of
anonymous DDoS or GET attacks.

Although this list of design practices may seem self-evident in
retrospect, it is precisely these kinds of behaviors that may escape
scrutiny when the effects are not immediately apparent (i.e., when
they are undocumented and occur silently). That lack of trans-
parency, in turn, motivates the need and value of measurements
like ours to uncover the existence and scope of such issues in fielded
systems.



In the Line of Fire:
Risks of DPI-triggered Data Collection CSET 2023, August 7–8, 2023, Marina del Rey, CA, USA

ACKNOWLEDGMENTS
We thank our anonymous reviewers for their time and invaluable
feedback. We would also like to thank our collaborators within the
UCSD IT and SDSC organizations for their time and help in initially
identifying this behavior.

Funding for this work was provided in part by National Science
Foundation grant CNS-2152644, the Irwin Mark and Joan Klein
Jacobs Chair in Information and Computer Science, and operational
support from the UCSD Center for Networked Systems.

In addition, this material is based upon work supported by the
National Science Foundation Graduate Research Fellowship Pro-
gram under Grant No. DGE-2038238. Any opinions, findings, and
conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of
the National Science Foundation.

REFERENCES
[1] S. Alvarez. 2007. AntiVirus (In)Security. https://fahrplan.events.ccc.de/camp/

2007/Fahrplan/attachments/1324-AntivirusInSecuritySergioshadownAlvarez.
pdf.

[2] J. Bethencourt, J. Franklin, and M. Vernon. 2005. Mapping Internet Sensors With
Probe Response Attacks. In Proceedings of the 14th USENIX Security Symposium
(USENIX Security ’05). USENIX Association, Baltimore, MD, USA, 193–208.

[3] L. Bilge and T. Dumitraş. 2012. Before We Knew It: An Empirical Study of Zero-
Day Attacks in the Real World. In Proceedings of the 2012 ACM Conference on
Computer and Communications Security (Raleigh, North Carolina, USA) (CCS ’12).
Association for Computing Machinery, New York, NY, USA, 833âĂŞ844.

[4] K. Bock, A. Alaraj, Y. Fax, K. Hurley, E. Wustrow, and D. Levin. 2021. Weaponizing
Middleboxes for TCP Reflected Amplification. In 30th USENIX Security Symposium
(USENIX Security 21). USENIX Association, 3345–3361. https://www.usenix.org/
conference/usenixsecurity21/presentation/bock

[5] K. Bock, P. Bharadwaj, J. Singh, and D. Levin. 2021. Your Censor is My Censor:
Weaponizing Censorship Infrastructure for Availability Attacks. In 2021 IEEE Se-
curity and Privacy Workshops (SPW). 398–409. https://doi.org/10.1109/SPW53761.
2021.00059

[6] CAIDA 2020. Routeviews Prefix to AS mappings Dataset for IPv4 and IPv6.
http://www.caida.org/data/routing/routeviews-prefix2as.xml.

[7] Censys [n. d.]. censys.io, July 22, 2020 dataset.
[8] J. Cox. 2020. Leaked Documents Expose the Secretive Market for Your Web

Browsing Data. https://www.vice.com/en/article/qjdkq7/avast-antivirus-sells-
user-browsing-data-investigation.

[9] Skylight Cyber. 2019. Cylance, I Kill You! https://skylightcyber.com/2019/07/18/
cylance-i-kill-you/.

[10] Z. Durumeric, Z. Ma, D. Springall, R. Barnes, N Sullivan, E. Bursztein, M Bailey,
J.A. Halderman, and V. Paxson. 2017. The Security Impact of HTTPS Interception.
In Proceedings the 24th Network and Distributed System Security Symposium (NDSS
’17). Internet Society, San Diego, CA, USA, 1–14.

[11] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-
Lee. 1999. Hypertext Transfer Protocol (HTTP/1.1): Authentication. https:
//datatracker.ietf.org/doc/html/rfc2616.

[12] R. Fielding and J. Reschke. 2014. Hypertext Transfer Protocol (HTTP/1.1): Au-
thentication. https://datatracker.ietf.org/doc/html/rfc7235.

[13] M. Handley, V. Paxson, and C. Kreibich. 2001. Network Intrusion
Detection: Evasion, Traffic Normalization, an End-to-End Protocol Se-
mantics. https://www.usenix.org/conference/10th-usenix-security-symposium/
network-intrusion-detection-evasion-traffic-normalization. In 10th USENIX Se-
curity Symposium (USENIX Security 01). USENIX Association, Washington, D.C.

[14] A. Joshi, L. Lloyd, P. Westin, and S. Seethapathy. 2019. Using Lexical Features
for URL Classification — A Machine Learning Approach. In Proceedings of the
Conference on Applied Machine Learning in Information Security (CAMLIS ’19).
Washington, DC, USA, 1–6.

[15] RACK911 Labs. 2020. Exploiting (Almost) Every Antivirus Software. https:
//rack911labs.ca/research/exploiting-almost-every-antivirus-software/.

[16] J. Ma, L. K. Saul, S. Savage, and G. M. Voelker. 2011. Learning to Detect Malicious
URLs. ACM Transactions on Intelligent Systems and Technology (TIST) 2, 3 (April
2011), 30:1–30:24.

[17] K. Manson. 2022. NSA Probing Reach of Software From Russia’s Kaspersky in US
Systems. https://www.bloomberg.com/news/articles/2022-05-10/nsa-probing-
kaspersky-s-reach-in-us-after-russian-invasion.

[18] S. Morgenroth. 2008. Using Google bots as an attack vector.

[19] NetAcuity [n. d.]. NetAcuity. https://digitalelement.com/solutions/ip-location-
targeting/netacuity.

[20] NIST 2004. CVE-204-0362. https://nvd.nist.gov/vuln/detail/CVE-2004-0362.
[21] NIST 2018. CVE-2018-11776. https://nvd.nist.gov/vuln/detail/CVE-2018-11776.
[22] NIST 2021. CVE-2021-33599. https://nvd.nist.gov/vuln/detail/CVE-2021-33599.
[23] NIST 2022. CVE-2022-20685. https://nvd.nist.gov/vuln/detail/CVE-2022-20685.
[24] OpenIntel 2022. Open Intel. http://www.caida.org/data/routing/routeviews-

prefix2as.xml.
[25] P. Pearce, R. Ensafi, F. Li, N. Feamster, and V. Paxson. 2017. Augur: Internet-Wide

Detection of Connectivity Disruptions. In 2017 IEEE Symposium on Security and
Privacy (SP). 427–443. https://doi.org/10.1109/SP.2017.55

[26] T. H. Ptacek and T. N. Newsham. 1998. Insertion, Evasion, and Denial of Ser-
vice: Eluding Network Intrusion Detection. https://apps.dtic.mil/sti/citations/
ADA391565.

[27] E. Rey. 2015. Playing With Fire: Attacking the FireEye MPS. https://static.ernw.
de/whitepaper/ERNW_Newsletter_51_Playing_With_Fire_signed.pdf.

[28] C. Shannon and D. Moore. 2004. The Spread of the Witty Worm. IEEE Security
and Privacy 2, 4 (July 2004), 46–50.

[29] E. Shimony. 2020. Anti-Virus Vulnerabilities: Who’s Guarding the Watch
Tower? https://www.cyberark.com/resources/threat-research-blog/anti-virus-
vulnerabilities-who-s-guarding-the-watch-tower.

[30] J. W. Stokes, J. C. Platt, H. J. Wang, J. Faulhaber, J. Keller, M. Marinescu, A. Thomas,
and M. Gheorghescu. 2012. Scalable Telemetry Classification for Automated Mal-
ware Detection. In Computer Security – ESORICS 2012. Springer Berlin Heidelberg,
Berlin, Heidelberg, 788–805.

[31] M. Stone. 2021. CVE-2021-1647: Windows Defender mpengine remote code
execution. https://googleprojectzero.github.io/0days-in-the-wild//0day-RCAs/
2021/CVE-2021-1647.html.

[32] F. Xue. 2008. Attacking Antivirus. BlackHat.
[33] K. Zetter. 2016. Symantec’s Woes Expose the Antivirus Industry’s Secu-

rity Gaps. https://www.wired.com/2016/06/symantecs-woes-expose-antivirus-
software-security-gaps/.

[34] M. Ziv, L. Izhikevich, K. Ruth, K. Izhikevich, and Z. Durumeric. 2021. ASdb: A
System for Classifying Owners of Autonomous Systems. In Proceedings of the
21st ACM Internet Measurement Conference (Virtual Event) (IMC ’21). Association
for Computing Machinery, 703âĂŞ719.

https://fahrplan.events.ccc.de/camp/2007/Fahrplan/attachments/1324-AntivirusInSecuritySergioshadownAlvarez.pdf
https://fahrplan.events.ccc.de/camp/2007/Fahrplan/attachments/1324-AntivirusInSecuritySergioshadownAlvarez.pdf
https://fahrplan.events.ccc.de/camp/2007/Fahrplan/attachments/1324-AntivirusInSecuritySergioshadownAlvarez.pdf
https://www.usenix.org/conference/usenixsecurity21/presentation/bock
https://www.usenix.org/conference/usenixsecurity21/presentation/bock
https://doi.org/10.1109/SPW53761.2021.00059
https://doi.org/10.1109/SPW53761.2021.00059
http://www.caida.org/data/routing/routeviews-prefix2as.xml
censys.io
https://www.vice.com/en/article/qjdkq7/avast-antivirus-sells-user-browsing-data-investigation
https://www.vice.com/en/article/qjdkq7/avast-antivirus-sells-user-browsing-data-investigation
https://skylightcyber.com/2019/07/18/cylance-i-kill-you/
https://skylightcyber.com/2019/07/18/cylance-i-kill-you/
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc7235
https://www.usenix.org/conference/10th-usenix-security-symposium/network-intrusion-detection-evasion-traffic-normalization
https://www.usenix.org/conference/10th-usenix-security-symposium/network-intrusion-detection-evasion-traffic-normalization
https://rack911labs.ca/research/exploiting-almost-every-antivirus-software/
https://rack911labs.ca/research/exploiting-almost-every-antivirus-software/
https://www.bloomberg.com/news/articles/2022-05-10/nsa-probing-kaspersky-s-reach-in-us-after-russian-invasion
https://www.bloomberg.com/news/articles/2022-05-10/nsa-probing-kaspersky-s-reach-in-us-after-russian-invasion
https://digitalelement.com/solutions/ip-location-targeting/netacuity
https://digitalelement.com/solutions/ip-location-targeting/netacuity
https://nvd.nist.gov/vuln/detail/CVE-2004-0362
https://nvd.nist.gov/vuln/detail/CVE-2018-11776
https://nvd.nist.gov/vuln/detail/CVE-2021-33599
https://nvd.nist.gov/vuln/detail/CVE-2022-20685
http://www.caida.org/data/routing/routeviews-prefix2as.xml
http://www.caida.org/data/routing/routeviews-prefix2as.xml
https://doi.org/10.1109/SP.2017.55
https://apps.dtic.mil/sti/citations/ADA391565
https://apps.dtic.mil/sti/citations/ADA391565
https://static.ernw.de/whitepaper/ERNW_Newsletter_51_Playing_With_Fire_signed.pdf
https://static.ernw.de/whitepaper/ERNW_Newsletter_51_Playing_With_Fire_signed.pdf
https://www.cyberark.com/resources/threat-research-blog/anti-virus-vulnerabilities-who-s-guarding-the-watch-tower
https://www.cyberark.com/resources/threat-research-blog/anti-virus-vulnerabilities-who-s-guarding-the-watch-tower
https://googleprojectzero.github.io/0days-in-the-wild//0day-RCAs/2021/CVE-2021-1647.html
https://googleprojectzero.github.io/0days-in-the-wild//0day-RCAs/2021/CVE-2021-1647.html
https://www.wired.com/2016/06/symantecs-woes-expose-antivirus-software-security-gaps/
https://www.wired.com/2016/06/symantecs-woes-expose-antivirus-software-security-gaps/

	Abstract
	1 Introduction
	2 Background
	2.1 FAUDE and intelligence collection

	3 Methodology
	3.1 Conducting a probe
	3.2 Global measurement

	4 FireEye monitoring footprint
	5 FireEye proxy network
	6 Related Work
	7 Ethics
	8 Discussion
	Acknowledgments
	References

